Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
J Chem Phys ; 159(4)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37503846

We investigate the electron emission from 3D chiral silver alloy nanohelices initiated by femtosecond laser pulses with a central photon energy of hν = 1.65 eV, well below the work function of the material. We find hot but thermally distributed electron spectra and a strong anisotropy in the electron yield with left- and right-circularly polarized light excitations, which invert in sign between left- and right-handed helices. We analyze the kinetic energy distribution and discuss the role of effective temperatures. Measurements of the reflectance and simulations of the absorbance of the helices based on retarded field calculations are compared to the anisotropy in photoemission. We find a significant enhancement of the anisotropy in the electron emission in comparison to the optical absorption. Neither simple thermionic nor a multiphoton photoemission can explain the experimentally observed asymmetries. Single photon deep-UV photoemission from these helices together with a change of the work function suggests a contribution of the chirally induced spin selectivity effect to the observed asymmetries.

2.
J Synchrotron Radiat ; 30(Pt 2): 479-489, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36891862

A split-and-delay unit for the extreme ultraviolet and soft X-ray spectral regions has been built which enables time-resolved experiments at beamlines FL23 and FL24 at the Free-electron LASer in Hamburg (FLASH). Geometric wavefront splitting at a sharp edge of a beam splitting mirror is applied to split the incoming soft X-ray pulse into two beams. Ni and Pt coatings at grazing incidence angles have been chosen in order to cover the whole spectral range of FLASH2 and beyond, up to hν = 1800 eV. In the variable beam path with a grazing incidence angle of ϑd = 1.8°, the total transmission (T) ranges are of the order of 0.48 < T < 0.84 for hν < 100 eV and T > 0.50 for 100 eV < hν < 650 eV with the Ni coating, and T > 0.06 for hν < 1800 eV for the Pt coating. For a fixed beam path with a grazing incidence angle of ϑf = 1.3°, a transmission of T > 0.61 with the Ni coating and T > 0.23 with a Pt coating is achieved. Soft X-ray pump/soft X-ray probe experiments are possible within a delay range of -5 ps < Δt < +18 ps with a nominal time resolution of tr = 66 as and a measured timing jitter of tj = 121 ± 2 as. First experiments with the split-and-delay unit determined the averaged coherence time of FLASH2 to be τc = 1.75 fs at λ = 8 nm, measured at a purposely reduced coherence of the free-electron laser.

3.
ACS Nano ; 16(8): 12145-12155, 2022 Aug 23.
Article En | MEDLINE | ID: mdl-35943911

The chirality-induced spin selectivity (CISS) effect facilitates a paradigm shift for controlling the outcome and efficiency of spin-dependent chemical reactions, for example, photoinduced water splitting. While the phenomenon is established in organic chiral molecules, its emergence in chiral but inorganic, nonmolecular materials is not yet understood. Nevertheless, inorganic spin-filtering materials offer favorable characteristics, such as thermal and chemical stability, over organic, molecular spin filters. Chiral cupric oxide (CuO) thin films can spin polarize (photo)electron currents, and this capability is linked to the occurrence of the CISS effect. In the present work, chiral CuO films, electrochemically deposited on partially UV-transparent polycrystalline gold substrates, were subjected to deep-UV laser pulses, and the average spin polarization of photoelectrons was measured in a Mott scattering apparatus. By energy resolving the photoelectrons and changing the photoexcitation geometry, the energy distribution and spin polarization of the photoelectrons originating from the Au substrate could be distinguished from those arising from the CuO film. The findings reveal that the spin polarization is energy dependent and, furthermore, indicate that the measured polarization values can be rationalized as a sum of an intrinsic spin polarization in the chiral oxide layer and a contribution via CISS-related spin filtering of electrons from the Au substrate. The results support efforts toward a rational design of further spin-selective catalytic oxide materials.

4.
ACS Nano ; 16(4): 4989-5035, 2022 Apr 26.
Article En | MEDLINE | ID: mdl-35318848

There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.

5.
J Phys Chem A ; 125(47): 10138-10143, 2021 Dec 02.
Article En | MEDLINE | ID: mdl-34788037

We performed a time-resolved spectroscopy experiment on the dissociation of oxygen molecules after the interaction with intense extreme-ultraviolet (XUV) light from the free-electron laser in Hamburg at Deutsches Elektronen-Synchrotron. Using an XUV-pump/XUV-probe transient-absorption geometry with a split-and-delay unit, we observe the onset of electronic transitions in the O2+ cation near 50 eV photon energy, marking the end of the progression from a molecule to two isolated atoms. We observe two different time scales of 290 ± 53 and 180 ± 76 fs for the emergence of different ionic transitions, indicating different dissociation pathways taken by the departing oxygen atoms. With regard to the emerging opportunities of tuning the central frequencies of pump and probe pulses and of increasing the probe-pulse bandwidth, future pump-probe transient-absorption experiments are expected to provide a detailed view of the coupled nuclear and electronic dynamics during molecular dissociation.

6.
Faraday Discuss ; 228(0): 519-536, 2021 May 27.
Article En | MEDLINE | ID: mdl-33575691

The emergence of ultra-intense extreme-ultraviolet (XUV) and X-ray free-electron lasers (FELs) has opened the door for the experimental realization of non-linear XUV and X-ray spectroscopy techniques. Here we demonstrate an experimental setup for an all-XUV transient absorption spectroscopy method for gas-phase targets at the FEL. The setup combines a high spectral resolving power of E/ΔE ≈ 1500 with sub-femtosecond interferometric resolution, and covers a broad XUV photon-energy range between approximately 20 and 110 eV. We demonstrate the feasibility of this setup firstly on a neon target. Here, we intensity- and time-resolve key aspects of non-linear XUV-FEL light-matter interactions, namely the non-resonant ionization dynamics and resonant coupling dynamics of bound states, including XUV-induced Stark shifts of energy levels. Secondly, we show that this setup is capable of tracking the XUV-initiated dissociation dynamics of small molecular targets (oxygen and diiodomethane) with site-specific resolution, by measuring the XUV transient absorption spectrum. In general, benefitting from a single-shot detection capability, we show that the setup and method provides single-shot phase-locked XUV pulse pairs. This lays the foundation to perform, in the future, experiments as a function of the XUV interferometric time delay and the relative phase, which enables advanced coherent non-linear spectroscopy schemes in the XUV and X-ray spectral range.

7.
Nat Commun ; 12(1): 643, 2021 Jan 28.
Article En | MEDLINE | ID: mdl-33510142

High-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics. It is implemented in XUV-only pump-probe transient-absorption geometry and provides in-situ information on the time-energy structure of FEL pulses. Using a rate-equation model for the time-dependent absorbance changes of an ionized neon target, we show how the frequency chirp can be directly extracted and quantified from measured data. Since the method does not rely on an additional external field, we expect a widespread implementation at FELs benefiting multiple science fields by in-situ on-target measurement and optimization of FEL-pulse properties.

8.
Chirality ; 33(2): 93-102, 2021 02.
Article En | MEDLINE | ID: mdl-33400337

Monolayers of chiral molecules can preferentially transmit electrons with a specific spin orientation, introducing chiral molecules as efficient spin filters. This phenomenon is established as chirality-induced spin selectivity (CISS) and was demonstrated directly for the first time in self-assembled monolayers (SAMs) of double-stranded DNA (dsDNA)1 . Here, we discuss SAMs of double-stranded peptide nucleic acid (dsPNA) as a system which allows for systematic investigations of the influence of various molecular properties on CISS. In photoemission studies, SAMs of chiral, γ-modified PNA show significant spin filtering of up to P = (24.4 ± 4.3)% spin polarization. The polarization values found in PNA lacking chiral monomers are considerably lower at about P = 12%. The results confirm that the preferred spin orientation is directly linked to the molecular handedness and indicate that the spin filtering capacity of the dsPNA helices might be enhanced by introduction of chiral centers in the constituting peptide monomers.


Electrons , Electron Transport , Models, Molecular , Nucleic Acid Conformation , Peptide Nucleic Acids
9.
J Phys Chem Lett ; 11(14): 5490-5496, 2020 Jul 16.
Article En | MEDLINE | ID: mdl-32584044

Solid-state excitonic excitations play an increasingly important role in optoelectronic and light harvesting processes due to their ubiquitous presence in dipolar two-dimensional materials. Here we show that long-lived solid-state excitons induce chemical reactions in adsorbed molecules and thus convert light into chemical energy. For the model system (NO)2 dimer adsorbed on ordered c(4×4) C60 films, time-of-flight measurements following UV laser excitation reveal a slow and a fast dissociative desorption channel, which are assigned to intersystem crossing and internal conversion, respectively, by time-dependent density functional theory calculations.

10.
Phys Rev Lett ; 123(10): 103001, 2019 Sep 06.
Article En | MEDLINE | ID: mdl-31573300

We demonstrate time-resolved nonlinear extreme-ultraviolet absorption spectroscopy on multiply charged ions, here applied to the doubly charged neon ion, driven by a phase-locked sequence of two intense free-electron laser pulses. Absorption signatures of resonance lines due to 2p-3d bound-bound transitions between the spin-orbit multiplets ^{3}P_{0,1,2} and ^{3}D_{1,2,3} of the transiently produced doubly charged Ne^{2+} ion are revealed, with time-dependent spectral changes over a time-delay range of (2.4±0.3) fs. Furthermore, we observe 10-meV-scale spectral shifts of these resonances owing to the ac Stark effect. We use a time-dependent quantum model to explain the observations by an enhanced coupling of the ionic quantum states with the partially coherent free-electron laser radiation when the phase-locked pump and probe pulses precisely overlap in time.

11.
Phys Chem Chem Phys ; 21(32): 17811-17820, 2019 Aug 28.
Article En | MEDLINE | ID: mdl-31372603

Silicon nanoribbons - one dimensional silicon structures with a pentagonal atomic structure and mixed sp2- and sp3-hybridisation - grow on Ag(110) upon deposition of silicon. These nanostructures are viewed as promising candidates for modern day electronics as they are comprised of the same element as today's semiconductor devices. Even though they have been studied extensively over the last decade, only little is known about their unoccupied band structure which is important for possible future optoelectronics, semiconductor, and spintronics applications. In order to elucidate the unoccupied band structure of the nanoribbons, k-resolved inverse photoemission spectroscopy (KRIPES) studies were performed on both nanoribbon structures reported in the literature as well as on the bare Ag(110) substrate within the energy range of E-EF = 0-6.5 eV. The obtained experimental results are compared to density functional theory (DFT) calculated band structures to assign individual spectral features to specific bands. Since even small changes in the structural model of the nanoribbons lead to a change in the calculated band structure, this comparison allows us to assess the validity of the proposed structural models.

12.
Phys Chem Chem Phys ; 21(7): 3761-3770, 2019 Feb 13.
Article En | MEDLINE | ID: mdl-30706068

The chirality-induced spin selectivity (CISS) in layers of helical molecules has gained considerable attention in the emerging field of spintronics, because the effect enables spin-filter devices under ambient conditions. Several theoretical studies have been carried out to explain this effect on a microscopic scale, but the origin of the effect is still controversial. In particular, the role of spin-flip scattering during electron transport is an open issue. In this study, we describe the electron and spin transport by macroscopic rate equations including spin-dependent losses and spin-flip scattering. We reduce the problem to the solution of the Riccati differential equation to obtain analytical expressions. The results allow the strength and scalability of CISS based spin-filters to be determined and interpreted from experimental data or quantum mechanical models. For the helical systems studied experimentally so far, it turns out that spin-flip scattering plays a minor role.

13.
Chem Sci ; 10(48): 11086-11094, 2019 Dec 28.
Article En | MEDLINE | ID: mdl-32206257

A temperature induced valence phase transition from Yb3+ at higher temperatures to Yb2+ at lower temperatures was observed at T = 110(1) K for intermetallic YbPd2Al3. The title compound has been prepared from the elements in sealed tantalum ampoules. The structure was refined from single-crystal data and the title compound was found to crystallize in the hexagonal YNi2Al3 type structure with space group P6/mmm and lattice parameters of a = 929.56(7) and c = 420.16(3) pm (300 K data). Full ordering of the Pd and Al atoms within the [Pd2Al3] δ- polyanion was observed. Magnetic measurements revealed an anomaly in the dc susceptibility data and intermediate valent Yb at higher temperature, as observed from the effective magnetic moment. The proposed valence phase transition was also observed as a λ-type anomaly in heat capacity measurements (T = 108.4(1) K), however, no systematic shift of the λ-peak was observed in field dependent heat capacity measurements. An antiferromagnetic ordering at this temperature, however, could be excluded, based on field-dependent susceptibility measurements and magnetization isotherms. No dynamic phenomenon was observed in ac susceptibility measurements, excluding e.g. spin-glass behavior. Subsequent temperature dependent single-crystal and powder X-ray diffraction experiments indicated a steep increase in the length of the c axis around T = 110 K upon cooling. However, no structural phase transition was found via single-crystal diffraction experiments conducted at 90 K. The anomaly was also observed in other physical measurements of e.g. the electrical resistivity, indicating a clear change in the electronic structure of the material. X-ray photoelectron spectroscopy conducted at room temperature shows the presence of both, Yb2+ and Yb3+, underlining the mixed-valent state. Members of the solid solution Yb1-x Ca x Pd2Al3 (x = 0.33, 0.67, 1) were finally used to further study the charge ordering and the present temperature induced valence phase transition.

14.
J Phys Condens Matter ; 30(43): 435002, 2018 Oct 31.
Article En | MEDLINE | ID: mdl-30232961

A combined theoretical and multi-technique experimental study was employed to comprehensively determine the electronic structure of 6H-SiC(0 0 0 1) surfaces upon hydroxyl and oxygen termination. We demonstrate the UV-induced formation of single-coordinated oxygen radicals in on-top sites above the atoms of the uppermost silicon layer of the substrate on initially hydroxyl-terminated SiC. Such a configuration of oxygen radicals represents an unprecedented adsorbate-derived system of unpaired electrons, bearing analogy to silicon and carbon dangling bonds on clean, unreconstructed SiC surfaces. We evidence the presence of adsorbate-derived surface states within the fundamental band gap for both hydroxyl- and oxygen-terminated SiC. For hydroxyl termination, a hydrogen-induced unoccupied surface state is revealed consistently by inverse photoemission spectroscopy and density-functional theory calculations employing self-interaction-corrected pseudopotentials (DFT-SIC). The formation of oxygen dangling bonds is accompanied by the occurrence of an occupied surface state derived from p x - and p y -orbitals associated with the unpaired electrons as proven by both ultraviolet photoemission spectroscopy and DFT-SIC.

15.
Chemistry ; 24(57): 15236-15245, 2018 Oct 12.
Article En | MEDLINE | ID: mdl-30133951

In this article, the first thoroughly characterized mixed-valent binary rare earth oxide synthesized under high-pressure/high-temperature conditions, and its low-temperature polymorph are reported. Crystalline HT-HP-Tb3 O5 has been prepared from an equimolar mixture of Tb4 O7 and Tb2 O3 under reaction conditions of 8 GPa and 1323 K. Single-crystal X-ray structure determination showed that HT-HP-Tb3 O5 crystallizes in the orthorhombic space group Pnma, isopointal to the ß-Yb5 Sb3 -type structure. Temperature-dependent measurements of the magnetic susceptibility showed that HT-HP-Tb3 O5 is a Curie-Weiss paramagnet. The observed effective magnetic moment of µeff =9.21(2) µB per formula unit fits well to the calculated moment of µcalc =9.17 µB . Low-field measurements revealed antiferromagnetic ordering at TN =3.6(1) K. Heat capacity measurements indicated an intrinsic structural phase transition of HT-HP-Tb3 O5 at low temperature, which was confirmed by synchrotron X-ray powder diffraction data recorded at 2 K. The metastable high-pressure modification HT-HP-Tb3 O5 undergoes a translationengleiche transition from space group Pnma to Pn21 a (non-standard setting of Pna21 ), leading to the low-temperature polymorph LT-HP-Tb3 O5 by loss of a mirror plane (displacive phase transition).

16.
Opt Express ; 26(11): 14524-14537, 2018 May 28.
Article En | MEDLINE | ID: mdl-29877488

High-harmonic generation is widely used for providing extreme ultraviolet radiation in attosecond science. Such experiments include photoelectron spectroscopy, diffractive imaging, or the investigation of spin dynamics. Many applications are restricted by a low photon flux which originates from the low efficiency of the generation process. In this article an effective method based on the quasi-phase-matched generation of high harmonics in spatially structured, laser ablated plasma is demonstrated. Through a proper dimensioning of the plasma structure, the harmonic yield is optimized for a controllable range of harmonic orders. By using four coherent zones, the intensity of a single harmonic is increased to a maximal possible value of 16 compared to using a single zone. The Gouy phase shift of the fundamental field is identified as the primary effect responsible for constructive interference of the harmonic fields generated in the individual plasma jets of the plasma structure.

17.
J Phys Chem Lett ; 9(8): 2025-2030, 2018 Apr 19.
Article En | MEDLINE | ID: mdl-29618210

The interaction of low-energy photoelectrons with well-ordered monolayers of enantiopure helical heptahelicene molecules adsorbed on metal surfaces leads to a preferential transmission of one longitudinally polarized spin component, which is strongly coupled to the helical sense of the molecules. Heptahelicene, composed of only carbon and hydrogen atoms, exhibits only a single helical turn but shows excess in longitudinal spin polarization of about P Z = 6 to 8% after transmission of initially balanced left- and right-handed spin polarized electrons. Insight into the electronic structure, that is, the projected density of states, and the spin-dependent electron scattering in the helicene molecule is gained by using spin-resolved density functional theory calculations and a model Hamiltonian approach, respectively. Our results support the semiclassical picture of electronic transport along a helical pathway under the influence of spin-orbit coupling induced by the electrostatic molecular potential.

18.
Opt Express ; 26(26): 35013-35025, 2018 Dec 24.
Article En | MEDLINE | ID: mdl-30650916

In the past, common media for high-order harmonic generation (HHG) has been atoms and molecules. More recently, clusters, and nanoparticles have been introduced as HHG emitting media. Multi-particle media can enhance HHG yields but have more stringent requirements in determining the optimal parameters. Here, we demonstrate, for the first time, the effective application of 1-3 nm metal sulfide quantum dots (QDs) for harmonic generation in the 20 - 115 nm extreme ultraviolet range. We report on the syntheses, ablation of Ag2S, CdS, and ZnS QDs, and HHG from laser-produced plasmas by using single- and two-color pumps. We compare HHG efficiency from the ablated QDs to that of bulk metal sulfides and show a seven-fold increase in harmonic yields. Further, the study also allows us to understand the effects of QD-contained plasma spreading dynamics on HHG yield.

19.
Chemistry ; 23(17): 4187-4196, 2017 Mar 23.
Article En | MEDLINE | ID: mdl-28139849

The three intermetallic compounds SrAuGa, BaAuAl and BaAuGa were synthesised from the elements in niobium ampoules. The Sr compound crystallises in the orthorhombic KHg2 -type structure (Imma, a=465.6(1), b=771.8(2), c=792.6(2) pm, wR2 =0.0740, 324 F2 values, 13 variables), whereas the Ba compounds were both found to crystallise in the cubic non-centrosymmetric LaIrSi-type structure (P21 3, BaAuAl: a=696.5(1) pm; wR2 =0.0427, 446 F2 values, 12 variables; BaAuGa: a=693.49(4) pm, wR2 =0.0717, 447 F2 values, 12 variables). The samples were investigated by powder X-ray diffraction and their structures refined on the basis of single-crystal X-ray diffraction data. The title compounds, along with references from the literature (CaAuAl, CaAuGa, CaAuIn, and SrAuIn), were characterised further by susceptibility measurements and 27 Al and 71 Ga solid-state NMR spectroscopy. Theoretical calculations of the density of states (DOS) and the NMR parameters were used for the interpretation of the spectroscopic data. The electron transfer from the alkaline-earth metals and the group 13 elements onto the gold atoms was investigated through X-ray photoelectron spectroscopy (XPS), classifying these intermetallics as aurides.

20.
Inorg Chem ; 56(4): 1919-1931, 2017 Feb 20.
Article En | MEDLINE | ID: mdl-28140577

Na2Au3Al, the first experimentally prepared compound in the ternary Na-Au-Al system, crystallizes in the cubic crystal system with space group P4132 (a = 771.42(2) pm). It can be described as a P-centered ternary ordered variant of the F-centered Laves phase MgCu2 and is isostructural to Mo3Al2C. A phase width was found for the series Na2Au4-xAlx allowing a successive substitution of Au by Al. The primitive structure forms for x ≥ 0.5. Na2Au3Al is diamagnetic at room temperature but metallic in nature, as seen from susceptibility and electrical resistivity measurements. Band structure calculations and X-ray photoelectron spectroscopy confirm the metallic nature of the title compound as states are found at the Fermi level of the DOS, along with its "auride" character. 23Na and 27Al solid-state-NMR investigations show the existence of both a disordered (x = 0.5 and 0.75) and a fully ordered (x = 1.0) representative within this series. Both COHP and Bader charge analyses suggest the presence of strong Au-Al interactions forming an anionic [Au3Al]δ- network, with the Na cations occupying the cavities.

...